Road Safety Manual
A manual for practitioners and decision makers
on implementing safe system infrastructure

You are here

1.2 The impact on public health

This section describes the current and forecast burden of road traffic injuries in more detail, both globally and regionally.

The Global Status Report on Road Safety is the central publication for periodic monitoring and evaluation of the Decade of Action for Road Safety goals (WHO, 2013a) . While crash injury data is incomplete and often substantially under-reported in many countries in both the health and transport sectors, the latest available estimates referred to in this manual provide a comprehensive strategic overview of the emerging crisis in LMICs.

The Global Status Report brings together data based on survey information collected for 182 countries, and makes estimates, where appropriate, to account for varying levels of data quality in order for data to be comparable across countries. This includes use of the 30-day definition of a road traffic death and involves point estimates of road traffic deaths in LMICs, which are sometimes far in excess of officially reported deaths. Data have been extrapolated for all 195 countries and territories in the world. Full details of the methodology used to develop comparative estimates are provided in WHO (2013a, p.42).

The Global Status Report notes the urgent need for standardised data collection on road traffic fatalities and the need for improvement in the quality of safety data on road traffic deaths, disability and other non-fatal injuries. See Effective Management And Use Of Safety Data for full discussion and guidance on the establishment, management and use of data, and determining levels of under-reporting.

Global estimates

In 2010, at least 1.24 million people lost their lives in road traffic crashes (WHO, 2013a). Road traffic injury is a leading cause of death and serious health loss (expressed in terms of disability adjusted life years lost (DALYs)1 (see Box 1.4 ). For every road traffic death, at least 20 people sustain non-fatal injuries (ranging from those that can be treated immediately and for which medical care is not needed or sought, to those that result in a permanent disability (Peden et al., 2004). On an annual basis, between 20 and 50 million people are disabled or injured as a result of road traffic crashes (WHO, 2013a).

Box 1.4: Road traffic injury as a leading cause of death and serious health loss

Road traffic injury in 2010 was the:

  • 9th leading cause of death, overtaking tuberculosis and malaria as causes
  • leading cause of death for young people aged 15–29 years
  • leading cause of death for males aged 5–14 years
  • leading cause of serious health loss for men aged 15–49 years
  • 2nd leading cause of death for those aged 15–49 years.

Source: WHO, (2013a); WHO (2013b); IHME, (2013)

 

In some regions, road traffic injury was the leading cause of death for certain age groups, as shown in Table 1.1. For HICs in general, road traffic injury was the leading cause of death for children aged 5–14 years (IHME, 2013). A study in four LMICs indicated that 17% of children attending an emergency department following a road traffic crash sustained disabilities lasting six weeks or more (WHO, 2008).

Region 1–4 years 5–9 years 10–14 years
Table 1.1: Ranking of death due to road traffic injury compared with all other causes for children by age-group in selected regions in 2010. Source: IHME, (2013).

North America

1

1

1

Central Europe

3

1

1

Australasia

2

1

1

Western Europe

2

2

1

North Africa and Middle East

4

1

1

Latin America

4

1

1

Death rates

In 2010, the global road traffic fatality rate was 18 per 100,000 population in low income countries, with the highest annual road traffic fatality rates averaging at 20.1 per 100,000 in middle-income countries, and the lowest average rate in high-income countries at 8.7 per 100,000 (see Figure 1.1).

Figure 1.1 Road traffic deaths per 100,000 population, by country income status; 2010 - Source: WHO, (2013a).

Some 80% of road traffic deaths occur in rapidly motorising middle-income countries, which account for 72% of the world’s population and 52% of the world’s registered vehicles. As shown in Figure 1.2, these countries have a high proportion of road traffic fatalities relative to their level of motorisation (WHO, 2013a). Details on individual country performance can be found in the periodic Global Status Reports (WHO, 2009, 2013a).

 Figure 1.2 Population, road traffic deaths and registered motor vehicles by country income status; 2010 - Source: WHO, (2013a).

Compared with the baseline data (2007, 2010) collected by the WHO to allow periodic monitoring of the Decade’s goal (which commenced in 2011), most HICs are reported as achieving decreasing numbers of deaths from road traffic crashes. Most LMICs are experiencing increasing numbers of fatalities, although just under a half of the middle-income countries have achieved decreases (see Figure 1.3).

Figure 1.3 Countries with changes in numbers of road traffic deaths (2007–2010) by country income status - Source: WHO, (2013a).

Between 2007 and 2010, the number of road traffic deaths decreased in 88 countries, of which 42 were high-income countries, 41 were middle-income countries, and five were low-income countries. Over the same period, 87 countries saw increases in the numbers of road traffic deaths (WHO, 2013a).

The main road casualty groups

In most LMICs, a much higher proportion of road users are pedestrians, cyclists and users of motorised two- or three-wheeled vehicles when compared with HICs. Over half of the global road traffic deaths occur among vulnerable road users – motorcyclists (23%), pedestrians (22%) and cyclists (5%), with the remaining share distributed as 31% of deaths among car occupants and 19% among unspecified road users. Low-income countries have the highest proportion of fatally injured casualties among vulnerable road users at 57%, as opposed to 51% in middle-income countries, and 39% in high-income countries (WHO, 2013a). Figure 1.4 provides further detail on road deaths by road user type for low-, middle- and high-income countries.

Figure 1.4 Proportion of road traffic deaths by road user type and country status; 2010 - Source: WHO, (2013a).

Even in HICs, vulnerable road users are often vastly over-represented when rates of death and serious injury are compared. For example, when the distances travelled (billion miles) by different modes of road use were compared, more than 10 times as many pedestrians and cyclists than car drivers lost their lives on Great Britain’s roads in 2011. For motorcyclists, the rate was around 40 times higher (Department for Transport, 2012). The gap is even wider when considering the risk of death or serious injury by billion vehicle miles. For each car driver in Great Britain, more than 20 times as many pedestrians and around 40 times as many cyclists were killed or suffered a serious injury from a road traffic crash. Motorcyclists were exposed to the greatest risk, as they were 75 times more likely to be killed or seriously injured than a car driver (Department for Transport, 2012).

Young adults aged between 15 and 44 years account for 59% of global road traffic deaths (see Figure 1.5); and more than three-quarters (77%) of all road traffic deaths occur among men. In high-income countries, the proportion of deaths among those over 70 years is noticeably greater than in LMICs. Key exposure factors, such as longevity in these countries, combined with the greater risk posed by increased frailty, will contribute to these outcomes (WHO, 2013a).

Figure 1.5 Proportion of road traffic deaths by age range and country income status - Source: WHO, (2013a).

Regional analyses

There is substantial variation in the road traffic death rates between different regions and within regions (see Figure 1.6). The reported risk of fatal injury is greatest in Africa at 24.1 per 100,000 populations and lowest in the European region at 10.3 per 100,000 population. Within regions, taking under-reporting of road fatalities into account, it is estimated that over half of African countries may have death rates of 30 per 100,000 population or more (AfDB, 2012). The lowest recorded global country death rates for 2010 were in Iceland (2.5 per 100,000 populations) and Sweden (2.8 per 100,000 population) (IRTAD, 2012).

Figure 1.6 Road traffic deaths per 100,000 populations by WHO region - Source: WHO, (2013a).

As shown in Figure 1.7, in four out of six WHO regions, car occupants are the largest fatal casualty group.

Figure 1.7 Road traffic deaths by road user type and WHO region; 2010 - Source: WHO, (2013a).

In Africa, Europe and the Americas, most deaths from road traffic crashes involve car occupants and pedestrians. In South East Asia and the Western Pacific, deaths amongst users of motorised two- and three-wheelers contribute a large proportion of total fatal casualties in road crashes (WHO, 2013a).

Future trend forecasts

Modelling of historic global trends indicates that if LMICs choose to follow the costly evolutionary path of HICs in reducing deaths and serious injuries as they built knowledge, then the road death toll in LMICs is likely to increase very substantially (Kopits and Cropper, 2003; WHO 2013b). Latest forecasts indicate that, based on current trends, 96% of the global total of road deaths by 2030 are likely to occur in LMICs (WHO, 2013b).

The highest projected regional death rates (deaths per 100,000 persons) to 2030 are in Sub Saharan Africa (38), South Asia (29) and the Middle East and North Africa region (28) with decreasing rates between 2015 and 2030 in the East Asia and Pacific and Latin America and Caribbean regions and, most sharply, in the European and Central Asia regions (See Table 1.2). There is large regional variation in LMICs in the number of deaths per 100,000 persons with the highest rates being 4 times higher than the lowest. By 2015, the death rate from road traffic crashes is forecast to be around 8 per 100,000 persons in HICs decreasing to 6 by 2030 but nearly 20 in 100,000 persons in LMICs (WHO, 2013b).

World (World Bank regions) Deaths per 100,000 persons
Table 1.2: Forecasts of deaths in road crashes (per 100,000 persons) for 2015 and 2030

 

2015

2030

South Asia

21

29

East Asia and Pacific

22

18

Sub-Saharan Africa

25

38

Middle East and North Africa

26

28

Latin America and Caribbean

20

19

European and Central Asia

14

9

High-income countries

8

6

Global total

20

22

Source: WHO, (2013b).

The relative importance of road traffic injury to other disease burdens is also predicted to increase steeply. Forecasts of global mortality trends to 2030 indicate that road traffic injury is set to increase from the 9th to the 7th cause of death, as shown in Figure 1.8 (WHO, 2013b).

 Figure 1.8 Forecasts of global mortality trends to 2030 - Source: WHO, (2013b).

Where do deaths and serious injuries occur?

Country road safety management capacity reviews and other studies reveal that the majority of road deaths and serious injuries occur on a relatively small proportion of the road network. Such roads usually have both urban and rural sections. In India, around two-thirds of deaths occur on national and state highways, which account for just 6% of the network (Mohan et al., 2009). In Bangladesh, just 3% of arterial roads account for 40% of the road deaths (Hoque, 2009). Statistics from a wide range of countries show that typically, around 50% of deaths occur on just 10% of the road network (McInerney, 2012). These roads have high strategic priority, attract large investment, and are particularly amenable to targeted road safety treatments (GRSF, 2013).

Typically, in the main road network, traffic volumes and vehicle speeds are high, with a mix of motorised traffic and non-motorised users, and mixed speed road environments (Commission for Global Road Safety, 2011; GRSF, 2006–2013; UNRSC, 2011b). A key problem is that many road standards used in road projects in LMICs do not provide for the degree of human vulnerability involved in the use of the road network. Furthermore, the efficient and effective police enforcement of safety behaviours, which contribute to the overall safety performance of road safety engineering standards in high-income countries, is lacking. Junction design standards and the management of road use from low- to high-speed environments expect vulnerable road users to compete successfully against faster, bigger vehicles, with tragic consequences (GRSF, 2010, 2011). While new roads bring new opportunities for development, many increase the risk of death and serious injury where roads are not restricted to through-traffic, where linear settlements are not avoided, and where there is no first class provision for pedestrians, cyclists and other vulnerable road users (UNRSC, 2011b). Specific global guidance to assist with project design for the road safety management of corridors is provided in Targets and Strategic Plans and in Planning, Design & Operation of this manual as well as global references on this issue (e.g. UNRSC, 2011b; GRSF, 2009, 2013; Breen et al., 2013).

What are the main road traffic crash types?

The main crash types on the world’s roads have been identified as follows (UNRSC, 2011b):

Walking and cycling across or along the road. A vulnerable road user’s risk increases steeply in mixed speed traffic when traffic speeds are greater than 30 km/h.

Head-on crashes typically kill and seriously injure occupants even in the best designed vehicles at speeds greater than 70 km/h.

Side impacts at intersections typically kill and seriously injure occupants even in the best designed vehicles at speeds greater than 50 km/h.

Run-off-road crashes into rigid fixed objects produce a high number of fatal and serious outcomes at speeds greater than 70 km/h for frontal impacts and 50 km/h for side impacts even in the best designed vehicles.

Further information is provided on the main crash types in Section Crash Causes and in Part Planning, Design & Operation.

What are the key road safety problems?

Road safety problems in low-, middle- and high-income countries are found across road safety management systems, including in:

  • the quality of institutional management arrangements: in leadership and results focus, coordination, legislation, funding, promotion, monitoring and evaluation, research and development, and knowledge transfer, which provide the foundation for producing intervention and improved road safety results;
  • the scope and quality of the intervention set: in the planning, design, operation and use of the road network; in the safety quality of vehicles and emergency medical response; insufficient attention to the evidence-base or to addressing the needs and vulnerabilities of all users;
  • the level of road safety results achieved for final outcomes: e.g. levels of deaths, serious injuries, costs; intermediate outcomes (e.g. level of safety quality of roads and vehicles, emergency medical system response, levels of drinking and driving, speeding, seat belt and crash helmet use); and institutional outputs (e.g. numbers of speed checks, breath tests).

LMICs present some particularly complex challenges for road safety work. Weak road safety management capacity in many countries presents a large barrier to road safety progress (GRSF, 2006–2013). Road safety progress will be linked to other development priorities such as:

  • broad institutional development and governance;
  • the establishment or improvement of health systems;
  • infrastructure network development;
  • police and judicial reform.

Country road safety investments in LMICs will have to be sustained over a long period and across a range of sectors, directed by appropriately resourced governmental lead agency arrangements.

A full discussion and guidance is provided in subsequent sections on critical success factors for addressing key road safety problems. This will address the needs of LMICs with their own special challenges. It will also provide guidance for HICs that are currently in the process of addressing strict Safe System parameters, which include new speed thresholds as well as the broader environmental and public health drive for more active transport solutions.

Footnotes
  • 1.Disability-adjusted life years lost (DALYs) is the sum of years lost due to premature death and years lived with disability. DALYs are also defined as years of health life lost.
Reference sources

No reference sources found.